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RESUMO

MARIANO, M. S. Cooperação e competição na evolução pré-biótica. 2023. 20p. Trabalho de
conclusão de curso - Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, 2023.

No contexto pré-biótico, antes do surgimento das primeiras formas de vida, a introdução da cooperação

na evolução molecular permitiu que replicadores, moléculas capazes de se autorreplicar, formassem

sistemas cada vez mais complexos, culminando na emergência das primeiras células. Para se entender

como isso ocorreu, analisou-se a competição entre dois tipos de replicadores: um que é egoísta

e outro que é cooperativo, ou seja, que catalisa a replicação de outros replicadores. Dessa forma,

foi estudado se uma população pequena de replicadores cooperativos consegue sobreviver se for

introduzida em uma população dominada por replicadores egoístas, de tal forma a se analisar o

efeito da cooperação na competição entre replicadores pré-bióticos. Essa competição foi descrita pelo

modelo da equação do replicador. Utilizou-se duas abordagens metodológicas neste trabalho: uma

analítica e outra computacional. Na abordagem analítica, encontraram-se os pontos de equilíbrio do

sistema de equações diferencias do modelo estudado e as condições para a estabilidade local desses

pontos. Na abordagem computacional, foram feitas dois tipos de simulações: uma determinística

e outra estocástica. A simulação determinística foi realizada a partir de métodos tradicionais de

solução numérica de equações diferenciais e é mais representativa para grandes populações. Já a

simulação estocástica foi feita por meio do algoritmo de Gillespie e é mais representativa para pequenas

populações. Conclui-se que, em populações totais pequenas, a suscetibilidade a variações aleatórias é

mais acentuada, diminuindo a chance de sobrevivência dos replicadores cooperativos para a maioria

dos casos. Todavia, mesmo para populações totais pequenas, os replicadores cooperativos podem

evitar a extinção em condições que normalmente os levariam à extinção se a população total fosse

maior. Além disso, observou-se que a precisão da catalisação dos replicadores cooperativos é um fator

decisivo: quanto maior a precisão, menor é a população inicial de replicadores cooperativos necessária

para que a probabilidade de extinção dela seja menor do que 50%. Portanto, pode-se inferir que

replicadores cooperativos puderam sobreviver em um sistema com população total pequena dominada

por replicadores egoístas, o que possibilitou a introdução da cooperação na evolução molecular.

Palavras-chave: Evolução Pré-Biótica. Evolução Molecular. Dinâmica Evolucionária. Evolução da

Cooperação. Equação do Replicador. Simulação estocástica. Algoritmo de Gillespie.
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1. INTRODUÇÃO

A vida é um fenômeno que vem fascinando muitas gerações de pensadores desde o surgimento

da filosofia e da ciência [1]. Apesar desse enorme interesse que persiste ao longo da história do

pensamento humano, ainda não se sabe como a vida se originou [2, 3]. Todavia, existem algumas

pistas sobre quais são os melhores caminhos para se compreender a origem da vida [4, 5]. Um desses

caminhos consiste na auto-organização da matéria [6,7]. Nesse contexto, o cenário ideal para se estudar

o surgimento da vida é a evolução pré-biótica [8, 9].

Como o próprio nome sugere, “pré” se refere à palavra “antes” e “biótica” se refere à palavra

“vida”, ou seja, “evolução pré-biótica” se refere à evolução que ocorreu antes do surgimento da vida

[10]. Mas quais entidades evoluíam se não havia vida? Para uma entidade evoluir, ela precisa ser

capaz de se reproduzir, ou seja, transmitir informações essenciais para as próximas gerações, de tal

forma que algumas dessas informações são alteradas devido a processos físicos e químicos, fenômeno

conhecido como mutação [11]. No contexto pré-biótico, essas entidades que evoluíam eram moléculas

autorreplicadoras, as quais podem ser chamadas de replicadores [12].

As interações entre os replicadores e o meio determinavam quais replicadores iriam sobreviver e

quais seriam extintos [13]. Mas quais eram as formas de interação entre esses replicadores pré-bióticos?

A primeira forma está intrinsecamente relacionada ao processo de seleção natural: competição [14].

Dado que existiam recursos finitos para os replicadores poderem se replicar no meio, eles competiam

por esses recursos e o mais apto se replica mais, passando as suas informações biológicas para

as próximas gerações [15]. Entretanto, no contexto pré-biótico, não havia mecanismos precisos de

replicação, de tal forma que a taxa de mutação era elevada o suficiente para impedir a formação de

moléculas complexas, problema esse conhecido como Paradoxo de Eigen [16]. Uma solução para esse

problema foi obtido através da introdução dos hiperciclos, os quais são replicadores cooperativos que

catalisam a replicação um do outro [17]. Dessa forma, a cooperação é a outra forma de interação entre

os replicadores pré-bióticos, a qual permitiu a formação de sistemas cada vez mais complexos [18–20].

Entretanto, surge uma questão intrigante: no contexto pré-biótico, no qual o ambiente era

altamente competitivo, dominado por replicadores não cooperativos, como a cooperação conseguiu

ser introduzida na evolução molecular? O objetivo deste trabalho consiste em estudar as possíveis
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respostas para essa pergunta por meio da análise da competição entre populações de replicadores

não cooperativos e cooperativos. A partir de um modelo matemático que descreve a evolução dessas

populações, serão feitos estudos analíticos e computacionais para se explorar as consequências da

presença da cooperação na evolução molecular em um contexto pré-biótico.

2. MÉTODOS

Primeiro, estudou-se o modelo da equação do replicador para o caso da evolução pré-biótica, o

qual descreve a evolução temporal de populações de replicadores por meio de equações diferenciais

derivadas da teoria de jogos evolucionários [21].

Por meio de um estudo analítico desse modelo, encontram-se os pontos de equilíbrio do sistema

de equações diferenciais estudado e as condições para a estabilidade local desses pontos. A partir das

condições encontradas, são tiradas conclusões gerais sobre esse modelo.

Por meio de um estudo computacional desse modelo, são realizadas simulações tanto determi-

nísticas quanto estocásticas, as quais foram feitas a partir de programas autorais escritos na linguagem

Python. A simulação determinística, a qual representa os resultados obtidos para grandes populações,

é feita a partir de métodos tradicionais de solução numérica de equações diferenciais. Já a simulação

estocástica, a qual representa os resultados para pequenas populações, é feita por meio do algoritmo de

Gillespie [22, 23].

Os resultados das simulações computacionais são apresentados em gráficos, mais especifica-

mente, em mapas de calor. Por meio da análise desses gráficos, os resultados desses dois tipos de

simulações são comparados e os seus significados biológicos são avaliados. A diversidade de análises

gráficas da simulação estocástica deste modelo, possibilitando a exploração em profundidade de todos

os parâmetros do modelo estudado, constitui uma contribuição original no estudo deste problema.

Por fim, esses resultados são discutidos em relação aos resultados obtidos por outros estudos de

abordagens distintas encontrados na bibliografia científica, o que permite avaliar as conclusões obtidas

por este trabalho.
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3. RESULTADOS E DISCUSSÕES

3.1. Modelagem do sistema

Uma maneira de se estudar como ocorreu a introdução da cooperação na evolução pré-biótica

é por meio da análise da competição entre dois tipos de replicadores: um que é egoísta e outro que

é cooperativo [21]. Um replicador é cooperativo se ele catalisa a replicação de outro replicador e é

egoísta se não a catalisa.

Toma-se que a população 1 corresponde à população de replicadores egoístas e a população

2 corresponde à população de replicadores cooperativos. As equações que descrevem a evolução

temporal dessas populações de replicadores são

Ẋ1 = X1(r1 +B1X2 − ψ) , (1)

Ẋ2 = X2((r2 − C) +B2X2 − ψ) , (2)

em que Xi é o número de replicadores da população i, ri é a taxa de crescimento da população i, C

é o custo de catalisar a replicação de outros replicadores e Bi é a taxa com a qual a replicação do

replicador i é catalisada [21].

Analisando-se (1) e (2), observa-se que as taxas de variação temporal Ẋi das populações

são proporcionais aos tamanhos das populações Xi, o que é devido à autorreplicação. Ademais, a

catalisação é modelada pelo produto dos tamanhos das populações. Percebe-se que (1) possui o termo

B1X2 pois se considera que, quando os replicadores cooperativos surgiram, os seus mecanismos

de catálise ainda não eram muito precisos, de tal forma que eles podiam catalisar a replicação de

replicadores egoístas com os quais eles competiam. Além disso, como a população 2, de replicadores

cooperativos, catalisa a replicação de outros replicadores, essa população arca com o custo C de

catalisação.

O termo ψ introduz a competição entre as duas populações e representa a seleção natural nesse

modelo. Ele é obtido a partir da condição de população constante X1 + X2 = XT (deriva-se essa

expressão e se usa (1) e (2)), em que XT é a população total, o qual é dado por

ψ =
r1X1 + (r2 − C)X2 +B1X1X2 +B2X

2
2

XT

. (3)



3.2. Estudo analítico 6

A suposição de população constante pode ser justificada pela hipótese de que, no contexto

pré-biótico, os replicadores surgiram em ambientes com recursos suficientes para a manutenção da vida,

mas com tamanhos limitados, os quais conseguiam comportar uma quantidade fixa de replicadores

[24, 25].

3.2. Estudo analítico

Substituindo-se a expressão de ψ dada por (3) nas equações (1) e (2), obtém-se que

Ẋ1 = r1X1 +B1X1X2 −
r1X

2
1 + (r2 − C)X1X2 +B1X

2
1X2 +B2X1X

2
2

XT

, (4)

Ẋ2 = (r2 − C)X2 +B2X
2
2 −

r1X1X2 + (r2 − C)X2
2 +B1X1X

2
2 +B2X

3
2

XT

. (5)

Para se estudar analiticamente a evolução temporal das populações de replicadores descritas

pelas equações diferenciais (4) e (5), analisa-se a estabilidade local dos pontos de equilíbrio (nos quais

as populações são constantes após transcorrer um longo tempo) [26–28], os quais são encontrados ao

se resolver o sistema de equações Ẋ1 = 0 e Ẋ2 = 0, dado porr1X1 +B1X1X2 − r1X2
1+(r2−C)X1X2+B1X2

1X2+B2X1X2
2

XT
= 0

(r2 − C)X2 +B2X
2
2 −

r1X1X2+(r2−C)X2
2+B1X1X2

2+B2X3
2

XT
= 0

. (6)

Para analisar a estabilidade local dos pontos de equilíbrio desse sistema de equações diferenci-

ais, lineariza-se o sistema em torno desses pontos, calculando-se a matriz jacobiana [26–28], a qual é

dada por

J =


∂Ẋ1

∂X1

∂Ẋ1

∂X2

∂Ẋ2

∂X1

∂Ẋ2

∂X2

 . (7)

Após isso, determinam-se os autovalores λ da matriz jacobiana para cada ponto de equilíbrio

(X∗
1 , X

∗
2 ) [26–28], de acordo com

det(J(X∗
1 , X

∗
2 )− λI) = 0 , (8)

em que I é a matriz identidade.

A estabilidade local dos pontos de equilíbrio é analisada a partir do sinal dos autovalores

[26–28]. Se um autovalor possui uma parte real negativa, então ele é estável, ou seja, a população
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tende a se aproximar desse ponto no equilíbrio. Se um autovalor possui uma parte real positiva, então

ele é instável, ou seja, a população tende a se afastar desse ponto no equilíbrio. Se os autovalores

tiveram sinais diferentes, então esse é um ponto de sela, ou seja, em certas direções é atrator e em

outras é repulsor. Se um autovalor possui uma parte imaginária, a população apresenta comportamento

oscilatório no equilíbrio.

Por meio dos procedimentos descritos acima, calculam-se os pontos de equilíbrio (X∗
1 , X

∗
2 ) do

sistema (6), os quais são (0, 0) , (XT , 0) , (0, XT ) ,
(
0, C−r2

B2

)
e
(

r2+B2XT−C−r1−B1XT

B2−B1
, C+r1−r2

B2−B1

)
.

Analisando-se a estabilidade desses pontos, obtêm-se os seguintes resultados:

1. O ponto (0, 0) não é físico devido à condição de população constante X1 +X2 = XT ;

2. O ponto (XT , 0) é instável se r2 > C + r1, o que significa que uma pequena população de

replicadores cooperativos consegue invadir uma grande população de replicadores egoístas

se a taxa de crescimento da população de replicadores cooperativos for maior que a taxa de

crescimento da população de replicadores egoístas somada ao custo C sofrido pela população de

replicadores cooperativos por catalisar a replicação de outros replicadores;

3. O ponto (0, XT ) é instável se r2 +B2XT < C + r1 +B1XT , o que significa que uma pequena

população de replicadores egoístas consegue invadir uma grande população de replicadores

cooperativos se a taxa de crescimento resultante (taxa de crescimento da população somado ao

efeito benéfico total da catalisação) da população de replicadores cooperativos for menor do

que a taxa de crescimento resultante da população de replicadores egoístas somada ao custo de

catalisação sofrido pela população de replicadores cooperativos;

4. O ponto
(
0, C−r2

B2

)
não é físico devido à condição de população constante X1 +X2 = XT ;

5. O ponto de coexistência
(

r2+B2XT−C−r1−B1XT

B2−B1
, C+r1−r2

B2−B1

)
é físico para B1 > B2 e r2 > C + r1

e r2+B2XT < C+r1+B1XT ou para B2 > B1 e r2 < C+r1 e r2+B2XT > C+r1+B1XT .

Para o primeiro caso, o ponto de coexistência é sempre estável, de tal forma a corresponder às

condições 2 e 3 acima, o que significa que as populações de replicadores egoístas e cooperativos

coexistem no equilíbrio. Para o segundo caso, o ponto de coexistência é sempre instável, de tal

forma a corresponder ao oposto das condições 2 e 3 acima, o que significa que as populações de

replicadores egoístas e cooperativos não coexistem no equilíbrio, ou seja, uma delas é extinta.
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3.3. Aplicação do algoritmo de Gillespie

O algoritmo de Gillespie é uma técnica de simulação que revolucionou a modelagem de

sistemas químicos e biológicos em níveis onde a aleatoriedade é uma característica inevitável. Esse

algoritmo oferece uma solução para simular a evolução temporal de sistemas de reações químicas que

são inerentemente estocásticos e discretos em sua natureza [22].

A importância desse algoritmo se torna evidente quando comparado com simulações deter-

minísticas, as quais pressupõem uma concentração contínua de substâncias. Enquanto as abordagens

determinísticas podem fornecer uma visão geral do comportamento médio de sistemas grandes, elas

falham ao tentar capturar as variações intrínsecas presentes em sistemas menores, em que o número de

moléculas pode ser suficientemente pequeno para as flutuações aleatórias terem efeitos significativos.

Esse algoritmo trabalha com a premissa de que as reações ocorrem discretamente no tempo e

que a probabilidade de uma reação ocorrer depende das concentrações dos reagentes envolvidos. Ao

calcular o tempo para a próxima reação e escolher qual reação acontecerá, baseado em suas taxas de

ocorrência, o algoritmo atualiza o estado do sistema em incrementos estocásticos [23]. O algoritmo de

Gillespie foi aplicado da seguinte forma ao modelo estudado:

1. Inicialização: O algoritmo começa com um conjunto de condições iniciais, as quais consistem

no número de replicadores de cada tipo no sistema;

2. Determinação das taxas de reação: Com base nas condições iniciais, as taxas de reação de todas

as reações que podem ocorrer são calculadas. No caso do modelo estudado, as reações ou são de

crescimento Xi = Xi + 1 ou de decrescimento Xi = Xi − 1 da população i. A Tabela 1 mostra

as taxas de reação para o modelo estudado, as quais são obtidas a partir das equações (4) e (5)

por meio do método proposto por Gillespie [22, 23];

3. Cálculo do tempo: A soma de todas as taxas de reação fornece a taxa total de eventos. O tempo

até a próxima reação é calculado usando uma distribuição exponencial, em que o tempo é

inversamente proporcional à taxa total de eventos;

4. Seleção da reação: Uma reação é selecionada com probabilidade proporcional a sua taxa de

reação;
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5. Atualização do sistema e das taxas de reação: A reação escolhida é executada, implicando na

atualização do número de replicadores de cada tipo e nas suas respectivas taxas de reação;

6. Repetição: Os passos 2, 3, 4, e 5 são repetidos até que um critério de parada seja satisfeito.

Reações Taxas de reação

X1 = X1 + 1 e X2 = X2 r1X1 +B1X1X2

X1 = X1 − 1 e X2 = X2
r1X1(X1−1)+(r2−C)X1X2+B1X1(X1−1)X2+B2X1X2(X2−1)

XT

X2 = X2 + 1 e X1 = X1 (r2 − C)X2 +B2X2(X2 − 1)

X2 = X2 − 1 e X1 = X1
r1X1X2+(r2−C)X2(X2−1)+B1X1X2(X2−1)+B2X2(X2−1)(X2−2)

XT

Tabela 1 – Reações e suas taxas usadas na aplicação do algoritmo de Gillespie para o modelo estudado.

3.4. Análise dos gráficos

No estudo analítico, observou-se que, conforme indica a condição 3, para populações totais

grandes, basta que a taxa de catalisação dos replicadores cooperativos B2 seja um pouco maior que

a dos replicadores egoístas B1 (sendo o caso para o contexto pré-biótico) para que a população de

replicadores cooperativos não seja invadida por replicadores egoístas. Dessa forma, a questão mais

interessante que será analisada é como replicadores cooperativos conseguiram ser introduzidos em

uma população dominada por replicadores egoístas. Para isso, as condições iniciais das simulações

computacionais realizadas é sempre a mesma (a não ser para aquelas simulações que variam as

condições iniciais): a população inicial de replicadores cooperativos é pequena e a população inicial de

replicadores egoístas é grande.

Portanto, foram feitos diversos mapas de calor para se analisar a relação entre a probabilidade

de extinção da população de replicadores cooperativos e os diferentes parâmetros do modelo estudado,

de tal forma que todas as combinações de parâmetros foram exploradas em profundidade. Além disso,

para cada combinação de parâmetros, foram feitos dois mapas de calor: um por meio de simulação

determinística (representando o resultado para uma grande população) e outro por meio de simulação

estocástica (representando o resultado para uma pequena população), a qual foi feita com o algoritmo de

Gillespie. Ademais, testou-se a validade da aplicação desse algoritmo ao se comparar os seus resultados

com os da simulação determinística para grandes populações. Como esses resultados ficaram iguais,

isso indica que a simulação estocástica foi aplicada corretamente.
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Figura 1 – Mapas de calor feitos a partir da simulação estocástica ((a), (c) e (e)) e a partir da simulação
determinística ((b), (d) e (f)). Quando não especificados nos gráficos, os valores dos outros
parâmetros são: r1 = r2 = 1, B1 = 1, B2 = 2, C = 0.5, XT = 10, e populações iniciais
X1 = 9 e X2 = 1.
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3.4.1. Análise da influência das taxas de crescimento, de catalisação e do custo

Os gráficos da Figura 1 ilustram a relação entre a probabilidade de extinção da população de

replicadores cooperativos e as taxas de crescimento r, de catalisação B e o custo C de catalisar a

replicação de outros replicadores (sofrido apenas pela população de replicadores cooperativos).

Para se compreender os resultados contidos na Figura 1, compararam-se os mapas de calor

gerados a partir da simulação estocástica ((a), (c) e (e)) com os produzidos a partir da simulação

determinística ((b), (d) e (f)). Observa-se que, para a maioria das combinações de parâmetros, a

probabilidade de extinção da população de replicadores cooperativos na simulação estocástica é

maior do que na simulação determinística. Isso se deve ao fato de a população total ser pequena e a

população inicial de replicadores cooperativos ser menor ainda, o que aumenta a suscetibilidade a

efeitos aleatórios. Resultados análogos foram obtidos em outros estudos [29–31].

Além disso, em regiões dos gráficos nas quais deveria ocorrer a extinção total conforme a

simulação determinística, existe uma probabilidade, mesmo que baixa, da população de replicadores

cooperativos não ser extinta na simulação estocástica. Dessa forma, o fato de a população ser pequena

pode fazer com que a população de replicadores cooperativos não seja extinta para valores de parâme-

tros para os quais ela seria extinta se a população fosse grande. Resultados análogos foram obtidos

tanto em estudos teóricos quanto experimentais [32–35].

3.4.2. Análise da influência da população total

Os gráficos da Figura 2 ilustram a relação entre a probabilidade de extinção da população de

replicadores cooperativos, a população total XT e as taxas de crescimento r, de catalisação B e o custo

C de catalisar a replicação dos replicadores (sofrido pela população de replicadores cooperativos).

Para se analisar os resultados apresentados na Figura 2, foram comparados os mapas de calor

feitos por meio da simulação estocástica ((a), (c) e (e)) com os feitos através da simulação determinística

((b), (d) e (f)). Conforme observado na seção anterior, observa-se que, para a maioria das combinações

de parâmetros, a simulação estocástica apresenta uma maior probabilidade de extinção da população

de replicadores cooperativos comparada à simulação determinística, cuja razão já foi anteriormente

discutida. Além disso, nota-se que em áreas dos gráficos onde a simulação determinística prevê

extinção total, ainda há uma chance, embora pequena, de que a população de replicadores cooperativos

sobreviva na simulação estocástica, e a razão para isso também já foi analisada previamente.
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Figura 2 – Mapas de calor feitos a partir da simulação estocástica ((a), (c) e (e)) e a partir da simulação
determinística ((b), (d) e (f)). Quando não especificados nos gráficos, os valores dos outros
parâmetros são: r1 = r2 = 1, B1 = 1, B2 = 2, C = 0.5, e populações iniciais X1 = 9 e
X2 = 1.
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Adicionalmente, pode-se observar algo novo em relação ao caso da seção anterior: para

populações totais pequenas, a probabilidade de extinção da população de replicadores cooperativos

é mais baixa, mesmo que para valores altos de r1
r2

, B1

B2
e C

r2
, ou seja, para valores de parâmetros

desfavoráveis para os replicadores cooperativos em grandes populações totais.

Para a Figura 2 (a) e a Figura 2 (e), essa diminuição na probabilidade de extinção ocorre

para valores muito baixos de XT , o que se deve pelo fato de que a população inicial de replicadores

cooperativos se torna uma fração considerável da população total. Todavia, para o caso da Figura 2 (c),

observa-se que essa diminuição da probabilidade acontece para valores de XT um pouco maiores. Isso

se deve pelo fato de que o efeito da cooperação é altamente sensível ao tamanho da população total.

Resultados análogos foram obtidos tanto para estudos teóricos quanto experimentais [36–38].

3.4.3. Análise da influência da população inicial

Os gráficos da Figura 3 ilustram a relação entre a probabilidade de extinção da população de

replicadores cooperativos, a população inicial de replicadores cooperativos X2 inicial e as taxas de

crescimento r, de catalisação B e o custo C de catalisação sofrido pelos replicadores cooperativos.

A fim de se compreender os resultados contidos na Figura 3, compararam-se os mapas de calor

confeccionados a partir da simulação estocástica ((a), (c) e (e)) com os construídos a partir da simulação

determinística ((b), (d) e (f)). Como mencionado nas seções anteriores, observa-se que, na maioria das

combinações de parâmetros, a chance de extinção da população de replicadores cooperativos é mais

alta na simulação estocástica do que na determinística, e o motivo para isso já foi previamente discutido.

Além disso, nota-se que em áreas dos gráficos onde a simulação determinística indica extinção total,

ainda há uma pequena possibilidade de que a população de replicadores cooperativos sobreviva na

simulação estocástica, e a razão para isso também foi analisada anteriormente.

Ademais, ao se analisar a Figura 3 (c), pode-se notar que, para valores de B1

B2
próximos a 1, a

probabilidade de extinção da população de replicadores cooperativos diminui conforme a população

inicial aumenta, apresentando uma grande diferença em relação à simulação determinística, como

mostra a Figura 3 (d). Isso significa que, para uma população total pequena, a população inicial de

replicadores cooperativos possui uma grande influência na probabilidade de extinção dessa população

e quanto menor for o efeito da cooperação, maior terá que ser a população inicial para evitar a extinção.

Resultados análogos foram obtidos tanto em estudos teóricos quanto experimentais [39–41].
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Figura 3 – Mapas de calor feitos a partir da simulação estocástica ((a), (c) e (e)) e a partir da simulação
determinística ((b), (d) e (f)). Quando não especificados nos gráficos, os valores dos outros
parâmetros são: r1 = r2 = 1, B1 = 1, B2 = 2, C = 0.5 e XT = 20.
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3.4.4. Análise da relação entre a população total e a população inicial

Os gráficos da Figura 4 ilustram a relação entre a probabilidade de extinção da população de

replicadores cooperativos, a população inicial de replicadores cooperativos X2 inicial e a população

total XT .

Para se entender os resultados apresentados na Figura 4, realizou-se uma comparação entre os

mapas de calor gerados pela simulação estocástica ((a), (c) e (e)) e aqueles produzidos pela simulação

determinística ((b), (d) e (f)).

Conforme observado nas seções anteriores, verifica-se que em grande parte das combinações

de parâmetros, a chance de extinção dos replicadores cooperativos é superior na simulação estocástica

em comparação com a determinística, e a justificativa para isso já foi abordada anteriormente.

Percebe-se ainda que em áreas dos gráficos onde a simulação determinística prevê extinção

total, há uma chance, embora pequena, de que a população de replicadores cooperativos não seja

extinta na simulação estocástica, e o motivo para isso também foi previamente examinado.

Ademais, observa-se que quanto maior é a precisão da catalisação dos replicadores cooperativos

em relação à catalisação de replicadores egoístas (quanto maior B2 for em relação a B1), menor é o

valor da população inicial de replicadores cooperativos para o qual a probabilidade de extinção dessa

população se torna menor do que 50%, além de ser mais rápido a diminuição da probabilidade de

extinção conforme a população inicial de replicadores cooperativos X2 inicial aumenta. Resultados

análogos foram obtidos em outros estudos [42–45].

Além disso, pode-se notar que quanto maior a precisão da catalisação dos replicadores co-

operativos, menor é a influência da população total na probabilidade de extinção da população de

replicadores cooperativos para uma dada população inicial. Dessa forma, para uma dada população

inicial de replicadores cooperativos, quanto maior a precisão da catalisação, menor é a dependência da

probabilidade de extinção da população de replicadores cooperativos em relação à população total. Isso

mostra que a precisão da catalisação dos replicadores cooperativos é fundamental para que pequenas

populações iniciais desses replicadores sobrevivam em grandes populações totais. Resultados análogos

foram obtidos tanto para estudos teóricos quanto experimentais [46–49].
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Figura 4 – Mapas de calor feitos a partir da simulação estocástica ((a), (c) e (e)) e a partir da simulação
determinística ((b), (d) e (f)). Em (a) e (b), B2 = 1.1. Em (c) e (d), B2 = 1.5. Em (e) e
(f), B2 = 2. Quando não especificados nos gráficos, os valores dos outros parâmetros são:
r1 = r2 = 1, B1 = 1 e C = 0.5.
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4. CONCLUSÕES E CONSIDERAÇÕES FINAIS

Este estudo, focado em elucidar a introdução da cooperação na evolução molecular em um

contexto pré-biótico, revelou aspectos cruciais sobre a interação entre populações finitas de replicadores

egoístas e cooperativos. Por meio de um rigoroso método que combinou abordagens analíticas e

computacionais (as quais evolveram tanto simulações determinísticas quanto estocásticas) para se

estudar o modelo da equação do replicador, obtiveram-se resultados significativos, enfatizando a

sensibilidade da cooperação ao tamanho das populações e à precisão da catalisação.

Foi constatado que, em populações totais pequenas, a suscetibilidade a flutuações aleatórias é

amplificada, exercendo uma influência considerável na sobrevivência dos replicadores cooperativos.

De forma notável, para populações totais pequenas, os replicadores cooperativos podem ter maior

probabilidade de evitar a extinção, mesmo em condições que favorecem sua eliminação em populações

maiores. Este fenômeno destaca a importância do tamanho populacional na evolução pré-biótica, um

aspecto muitas vezes subestimado.

Outra conclusão importante é a influência decisiva da precisão da catalisação dos replicadores

cooperativos. Quanto maior essa precisão, menor a população inicial de replicadores cooperativos

necessária para reduzir o risco de extinção abaixo de 50%. Esse resultado aponta para a catalisação

precisa como um mecanismo vital para a sobrevivência e prevalência de replicadores cooperativos, os

quais surgiram em pequenas populações iniciais.

A contribuição original deste trabalho reside na grande diversidade de análises obtidas a

partir da aplicação das simulações estocásticas, realizadas por meio do algoritmo de Gillespie, no

modelo da equação do replicador. Essa abordagem permitiu uma compreensão mais aprofundada das

dinâmicas estocásticas em populações finitas de replicadores, complementando as análises analíticas e

as simulações determinísticas tradicionais. Além disso, este estudo resultou em conclusões análogas a

outros estudos com abordagens diferentes, de tal forma a corroborar a metodologia utilizada aqui.

Portanto, este trabalho oferece uma análise abrangente sobre as interações entre replicadores

pré-bióticos que permitiram que a cooperação fosse introduzida na evolução molecular. A fusão

realizada neste estudo entre métodos analíticos e computacionais demonstra a riqueza e o potencial de

tais abordagens interdisciplinares no estudo da evolução molecular e da origem da vida.
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